2,3,7,8-Tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor-alpha and anti-CD40-induced activation of NF-kappaB/Rel in dendritic cells: p50 homodimer activation is not affected.

نویسندگان

  • Carl E Ruby
  • Mark Leid
  • Nancy I Kerkvliet
چکیده

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses many immune responses, both innate and adaptive. Suppression is mediated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. The AhR mediates TCDD toxicity presumably through the alteration of transcriptional events, either by promoting gene expression or potentially by physically interacting with other transcription factors. Another transcription factor, NF-kappaB/Rel, is involved in several signaling pathways in immune cells and is crucial for generating effective immune responses. Dendritic cells (DCs), considered to be the "pacemakers" of the immune system, were recently recognized as targets of TCDD and are also dependent on NF-kappaB/Rel for activation and survival. In these studies, we investigated whether TCDD would alter the activation of NF-kappaB/Rel in DCs. The dendritic cell line DC2.4 was exposed to TCDD before treatment with tumor necrosis factor alpha (TNF-alpha) or anti-CD40, and NF-kappaB/Rel activation was measured by electrophoretic mobility shift assay and immunoblotting. TCDD suppressed the binding of NF-kappaB/Rel to its cognate response element in TNF-alpha- and anti-CD40-treated cells and blocked translocation to the nucleus. The AhR was shown to associate with RelA, after coimmunoprecipitation, and seemed to block its binding to DNA. It is noteworthy that p50 homodimers freely bound to DNA. These results suggest that TCDD may alter the balance between NF-kappaB/Rel heterodimers and transcriptional inhibitory p50 homodimers in DCs, leading to defects in the DCs and suppression of the immune response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2,3,7,8-Tetrachlorodibenzo-p-dioxin Suppresses Tumor Necrosis Factor- and Anti-CD40–Induced Activation of NF- B/Rel in Dendritic Cells: p50 Homodimer Activation Is Not Affected

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses many immune responses, both innate and adaptive. Suppression is mediated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. The AhR mediates TCDD toxicity presumably through the alteration of transcriptional events, either by promoting gene expression or potentially by physically interacting with other transcrip...

متن کامل

Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells.

Juvenile myelomonocytic leukemia (JMML) is a severe childhood malignancy. The autocrine production of GMCSF is believed to be responsible for the spontaneous proliferation of JMML cells. A nuclear factor-kappaB (NF-kappaB)/Rel binding site within the GM-CSF gene promoter, termed the kappaB element, plays an important role in controlling transcription from the GM-CSF gene. We investigated the ef...

متن کامل

Activation of the NF-kappaB pathway by inflammatory stimuli in human neutrophils.

Activated neutrophils have the ability to upregulate the expression of many genes, in particular those encoding cytokines and chemokines, and to subsequently release the corresponding proteins. Although little is known to date concerning the regulation of gene transcription in neutrophils, it is noteworthy that many of these genes depend on the activation of transcription factors, such as NF-ka...

متن کامل

NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1.

Postmenopausal osteoporosis and rheumatoid joint destruction result from increased osteoclast formation and bone resorption induced by receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor (TNF). Osteoclast formation induced by these cytokines requires NF-kappaB p50 and p52, c-Fos, and NFATc1 expression in osteoclast precursors. c-Fos induces NFATc1, but the relationship betw...

متن کامل

Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

OBJECTIVE Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. METHODS AND RESULTS Treatment of endothelial cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 2002